SPECTROSCOPIC ANALYSIS OF ARCHITECTURAL COATINGS FOR IMPROVED WEATHERING

Karl Booth

Western Coatings Show

October 23, 2019

Exterior Product Development Pain Points

Exterior Exposure

- Gold standard for product validation
 - Dirt pickup
 - Grain crack
 - Adhesion
 - Gloss retention
 - Mildew

Disadvantages

- Multi-year investment
- Variability within and between studies

EPS Exposure Progam

ENGINEERED SOLUTIONS SOLUTIONS Los Angeles, CA Marengo, IL Ft Myers, FL

Exposure Study for Gloss Retention

Main objectives:

- 1. Identify the conditions that are most challenging to gloss retention performance.
- 2. Identify conditions that are most stable, consistent and reproducible.

Polymer	Substrate	Location	Color	
1	Primed Aluminum	California	White	
2	Primed Cedar	Florida	Yellow Oxide	
3	Galvanized	Illinois	Lamp Black	
3	Drimed Herdie	IIIIIOIS		
4	Primed Hardie			
5	Bare Aluminum			
6	SYP			
7				

- ✤ Paints were all <50 g/L and adjusted to pass LTC</p>
- 972 individual panels
- 3,400 readings taken over 6 months

Exposure Study for Gloss Retention

Location Selection

- Florida shows the largest variation, highest mean
- California shows lowest gloss
 - Gloss evaluated both washed & unwashed
 - Dirt pickup responsible for gloss reduction

Sample	Mean	Std. Dev	Grouping		
California	17.2	3.7	А		
Florida	36.7	7.3		В	
Marengo	30.0	6.1			С

Exposure Study for Gloss Retention

Substrate Selection

- Dimensionally stable types showed lowest Std. Dev
- Primed aluminum & cement board were most consistent

Sample	n	Mean	Std. Dev	Grouping		
SYP	162	3.1	2.0	А		
Primed Cedar	143	2.0	1.4		В	
Primed Hardie	107	1.8	1.1		В	С
Primed Galvanized	108	1.6	1.6		В	С
Primed Aluminum	108	1.4	1.1			С

Primed Aluminum, Florida Selected

Accelerated Approaches

- QUV-A (340nm)
 - Industry Standard for coatings
 - 8hr UV, 4 condensation; 60/50°C
 - Mimics higher energy portion of solar radiation, 340nm
- Xenon Arc (290-800)
 - Stronger match for full range solar radiation
 - Less common than QUVA
- QUV-B (313nm)
 - Highest energy wavelength, 313nm
 - Typically only used for extremely durable materials

Onset of Gloss Loss in Cyclic Testing

- High performance architectural coatings tend to maintain constant gloss over a period of time
- After a exposure, sufficient UV induced degradation has occurred that film erosion and roughness is detectable by gloss measurement
- It is important to validate QUVA with true exterior weathering

Relating QUV to Exterior Exposure

Cyclic QUVA

Florida Exposure – Primed Aluminum

Modes of UV-Degradation

Chiantore, O., L. Trossarelli, and M. Lazzari. "Photooxidative Degradation of Acrylic and Methacrylic Polymers." Polymer 41, no. 5 (March 2000): 1657

Functional Group Analysis

- ATR-FTIR allows semi-quantitative analysis of film degradation
- Relating C-H to C=O demonstrates trends in degradation

C-H

 $\frac{\int 1600 - 1800 cm - 1}{\int 2800 - 3050 cm - 1}$

- = Carbonyl Index
- Comparing changes in index between samples predicts relative degradation rates

QUVA and Carbonyl Index

- Carbonyl index run on a polymer series at 0 and 7 days cyclic exposure

- The change in index predicts the relative rate of oxidative polymer degradation

QUVA and Carbonyl Index

Critical Failure Hour

Polymer 3

Polymer 4

Delta Carbonyl Index by Polymer

6

1w Carbonyl Index Delta1556767778999<t

0

Polymer 1

Polymer 2

Accelerating Development

Results

- Carbonyl Index provides early indication of polymer performance
- Tight formulation control allows for strongest predictive power

Experiment

- Replace primary monomer in polymer 1 with 3 alternatives, maintain Tg
- Expose to standard QUVA testing
- Evaluate carbonyl index at regular intervals

Gloss Retention of Monomer Replacements

Cyclic QUVA vs. Alternative Exposures

160

- UV-only highlights the positive side of UV exposure, crosslinking, which can increase gloss
- Cyclic QUVA involves both a UV step and a humidity step, so it is valuable to determine their individual impacts
- The combination of UV and condensation provides a severe change in gloss behavior
- Humidity exposure (Cleveland) can also severely impact gloss, but carbonyl indexing is insensitive to this mode of failure

Paint 1: Gloss vs Time

- Understanding the fundamentals of weathering is pivotal to developing innovative and differentiated technology
- ATR-FTIR allows for the characterization of UV degradation at a molecular level, and gives early predictions of polymer performance where carbonyl functionality is changing
- The study of separate UV or humidity cycles demonstrates that the presence of water has both a physical and chemical impact

Specials thanks to: Matt Andersson, Paige Booth, Chuck Myers, Jacob Bolton, Mike Wildman, Robert Sandoval, Gunnar Duner, Heidi Docktor

Thermo Fischer Nicolet iS10 with Smart iTR fixture

THANK YOU QUESTIONS?

