ENGINEERED ‘
POLYMER S.C'enFe
SOLUTIONS B Simplified

Driving Balance of Properties at Lower VOCs in
Waterborne Industrial Maintenance Coatings

WCS 2015
Allen Bulick — Group Leader, Industrial




Agenda

Innovation Drivers in Coatings
National VOC Restrictions

Balance of Properties in Waterborne Industrial
Coatings

Hardness/Block/Corrosion Performance
Survey

Polymer Design/Monomer Toolbox
Next Generation Technology




Innovation Drivers

* All about EHS — many examples driving technology
changes

— VOC reduction

* Reduction/elimination of coalescing solvents

* Low maximum incremental reactivity (MIR)

* Low hazardous air pollutants (HAPs)

* 100% solids epoxies

* Conversion to water — 2k epoxies, 2k urethanes, alkyds

— APEO-free

— Chromate-free

— |socyanate-free

— BPA-free can/bottle coatings




VOC Restrictions

Regulatory Body IM VOC Limit Rust Preventive Limit
(g/L) (g/L)
EPA 450 400

CARB 250 150
South Coast
(SCAQMD) 100 100
oTC 250 250
Canada 340 400
LADCO 340 400

Elimination of quart exemption will force compliance with
100g/L in South Coast — may drive 100g/L adoption
across country for national suppliers to minimize SKUs
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Balance of Properties

For DTM coatings, customers may specify a variety of
performance attributes:

— VOC, application, corrosion resistance, adhesion, block resistance,
gloss, hardness, chemical resistance, early water resistance, etc

Typically two strategies employed to hit lower VOC water-
based formulations

— Lower MFFT through T, reduction

— Formulation with low VOC plasticizer

Properties such as hardness and block resistance are most
often sacrificed

— Can be addressed through formulation but usually have tradeoffs

Polymer design strategies can overcome some of these
limitations to retain a balanced polymer




Hardness/Block Resistance Survey
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Survey of commercially available, <100g/L capable resins and paints
Resins formulated into 100g/L high gloss formulations

Konig oscillations @ 3-3.5mil DFT, 24hr block @ 3mil wet

Significant performance gap for good block and hardness



Hardness/Block Resistance Survey

High VOC
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High VOC resins more likely to hit performance balance

Early hot block resistance can still be occasionally
troublesome



Corrosion Performance —B117

R-Series Q Panel, 2-2.5mil DFT

EPS Incumbent Resin A Resin B
Hardness/Block - 25/7 21/0 . 13/6

Full field
blistering
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Corrosion Performance —B117




Corrosion Performance —B117

Resin F Resin G High VOC Resin 1
19/4 | 14/0 23/0




Corrosion Performance —B117
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How to Tune Performance

e Statistical design approach optimizing all important
factors of polymer development
— Monomer composition
— Surfactant choice
— Feed ratios, times
— Polymer morphology
— Crosslinker type
— Particle size
— MW?
— etc
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Waterborne vs. Solventborne
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Polymer Morphologies

Single Feed Core/Shell Gradient
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Tuning Monomer Composition
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Crosslinker Types

Build hardness back into the polymer prior to, during or after film formation
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Other secondary interactions:
» Hydrogen bonding
» Pi-pi stacking
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Crosslinking Mechanisms

Bridging mechanism Film-forming process
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One-pot Toughness
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http://www.khneochem.co.jp/en/rd/technology/daam/
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Crosslinking Mechanisms
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Next Generation 100g/L

High VOC Resin 1 Prototype 5 EPS Incumbent
100g/L 100 g/L
’ 26/7
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25/7

300 hrs r 300 hrs
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Adhesion vs. Corrosion Resistance
2-2.5mil DFT, 12PVC High Gloss, 400hr B117

Decreasing adhesion properties

EPS Incumbent Prototype 1 Prototype 2 Prototype 3 Prototype 4




Full field blister Significant corrosion

Blistering in Salt Fog

Not all blistering created equally
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Summary

Low VOC trends place difficulties in resin selection and design
vielding a performance gap in balancing hardness/block/ corrosion
resistance

Systematic polymer design can yield well-balanced, high
performance waterborne systems

Current experimental prototypes based on current state of the art
polymer understanding are filling that performance gap

Good adhesion not necessarily a requisite for good corrosion
resistance

Blistering can be caused by different mechanisms, some related to
corrosion and others not

Future work includes leveraging learnings to carry performance
properties through 50g/L and lower
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Questions?
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