

# ADH-Free Water Based Binder for Lasure Coatings - EU Ecolabel Compliant

Massimo Longoni European Coating Show 2017 Conference 03<sup>rd</sup> /04<sup>th</sup> April 2017 Nuremberg - Germany





#### EU Ecolabel, background and facts

- > Why adipic acid dihydrazide (ADH)?
- > New development  $\rightarrow$  1-to-1 substitution
- > Comparative study  $\rightarrow$  lasure formulations

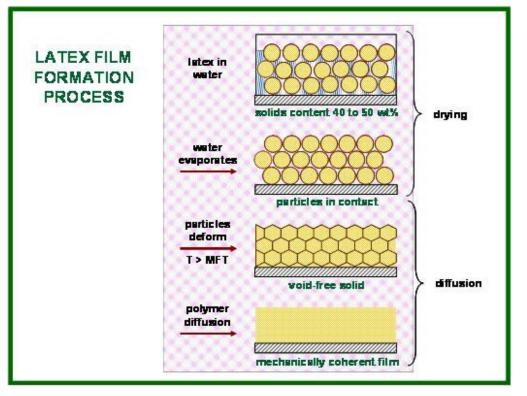
# EU Ecolabel scheme Voluntary award





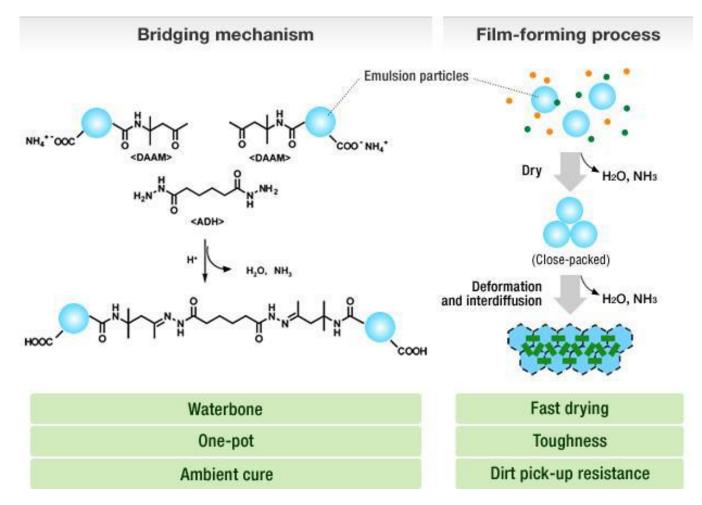
- Introduced in 1982 (Regulation (EC) 1980/2000) Implemented in 2009 (Regulation (EC) 66/2010)
- > > 44000 products & services involved (Sep. 2015)
- Paints & varnishes category Commission Decision 2014/312/EU counts 10% ca. of total number of awards (Sep. 2015)
- Key points: Voluntary
  Focus on environmental impact (hazardous content) and life cycle (durability)
   Visual label for consumers






- EU Ecolabel, background and facts
- > Why adipic acid dihydrazide (ADH)?
- > New development  $\rightarrow$  1-to-1 substitution
- > Comparative study  $\rightarrow$  lasure formulations

# Why is ADH used in water based binders? Room temperature curing




- Polymers designed with Tg = 0-20 °C
  - Good film formation but,
  - Leads to blocking
  - Low water resistance
- Solution: Post cure films
  - Preferably with 1K system



# Crosslinking mechanism Room temperature curing





Reference: http://www.khneochem.co.jp/en/rd/technology/daam/

# ADH is hazardous to the environment New crosslink solutions are needed

- Chronic category 2 hazard statement H411
- Ecolabel threatened
- On March 16, 2016 the commission has derogated ADH since no alternative is feasible
- Up to 1% ADH can be used





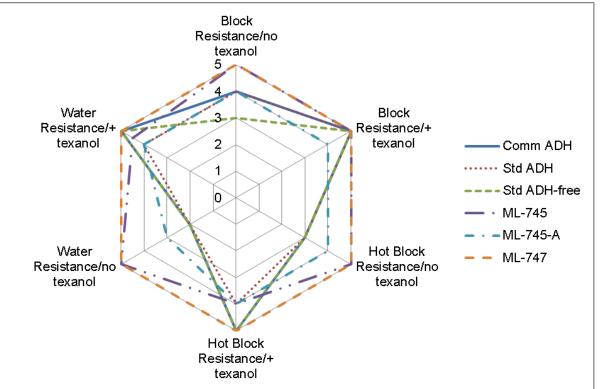




- EU Ecolabel, background and facts
- > Why adipic acid dihydrazide (ADH)?
- > New development  $\rightarrow$  1-to-1 substitution
- > Comparative study  $\rightarrow$  lasure formulations

# **Development aim** 1-to-1 substitution of ADH containing binder

- 1K crosslinkable binder
- Two phase polymer, optimized monomer composition
- Comparable properties to ADH in respect to:
  - Block resistance
  - Water resistance
- 0 VOC improve vs standard


All screening tests done on binder with and without solvent





### New Acrylic Polymer Multiple options





|              | Cross-linker   |
|--------------|----------------|
| Comm ADH     | $\sqrt{(ADH)}$ |
| Std ADH      | $\sqrt{(ADH)}$ |
| Std ADH-free | ×              |
| ML-745       | $\checkmark$   |
| ML-745-A     | $\checkmark$   |
| ML-747       | $\checkmark$   |

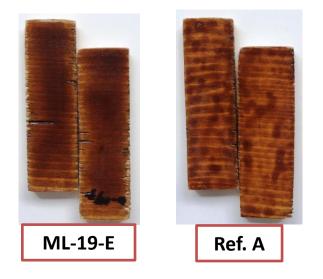
#### New AC $\rightarrow$ no coalescing agent required





- > EU Ecolabel, background and facts
- > Why adipic acid dihydrazide (ADH)?
- > New development  $\rightarrow$  1-to-1 substitution
- > Comparative study  $\rightarrow$  lasure formulations
- Summary

### **Comparative study** Lasure formulation




|                              | ML-19-E | ML-39-D |
|------------------------------|---------|---------|
|                              |         |         |
| ML-745                       | 50      |         |
| ML-747                       |         | 50      |
|                              |         |         |
| Defoamer                     | 0.40    | 0.40    |
| Deareator                    | 0.50    | 0.50    |
| Substrate wetting agent      | 0.20    | 0.20    |
| Neutralising agent           | 0.10    | 0.10    |
|                              |         |         |
| Texanol                      | 1.00    | 1.00    |
| UV absorber                  | 1.00    | 1.00    |
| Water                        | 45.40   | 45.40   |
|                              |         |         |
| Slip agent                   | 0.20    | 0.20    |
| In-can preservative          | 0.10    | 0.10    |
|                              |         |         |
| Pseudoplastic HEUR thickener | 0.40    | 0.40    |
| Newtonia HEUR thickener      | 0.70    | 0.70    |
|                              | 100     | 100     |

- Low VOC (possible to formulate 0 VOC)
- Low solids (23%)
- Test vs commercial lasures: Ref.
  A, Ref. B (glossy, low solids 23/24%)
- Compare: block resistance, adhesion, weathering resistance and gloss retention in accelerated test and natural exposure

### Block Resistance Room and high temperature



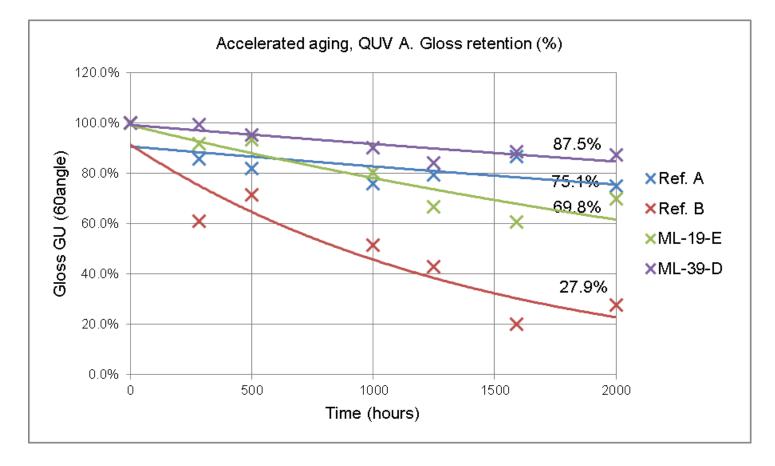


| 1 hour @ 50°C                  | Ref. A | Ref. B | ML-19-E | ML-39-D |
|--------------------------------|--------|--------|---------|---------|
| Block pressure - (1kg * 1 cm2) | 5A     | 5B     | 5A      | 5A      |
|                                |        |        |         |         |
| 24 hours @ RT                  | Ref. A | Ref. B | ML-19-E | ML-39-D |
| Block pressure - (1kg * 1 cm2) | 5A     | 5A     | 5A      | 5A      |

Optimal block and hot block resistance

# Adhesion Dry and wet

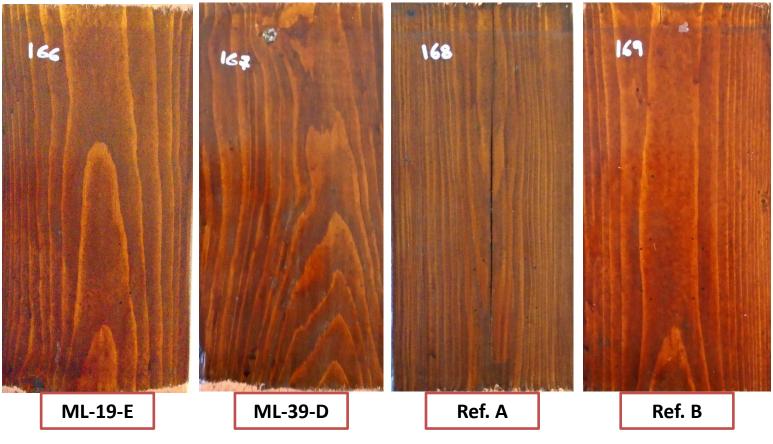





|         | Dry Adhesion | Wet Adhesion |
|---------|--------------|--------------|
| Ref. A  | GT 0         | GT 0         |
| Ref. B  | GT 0         | GT 2         |
| ML-19-E | GT 0         | GT 0         |
| ML-39-D | GT 0         | GT 0         |

Perfect adhesion!

# **QUV A Gloss retention** Comparable performance to ADH/polymers

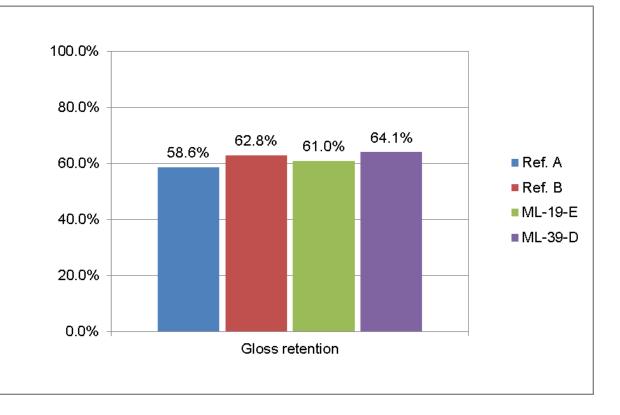





Top gloss retention

#### Natural exposure Good shape after one year on a test fence

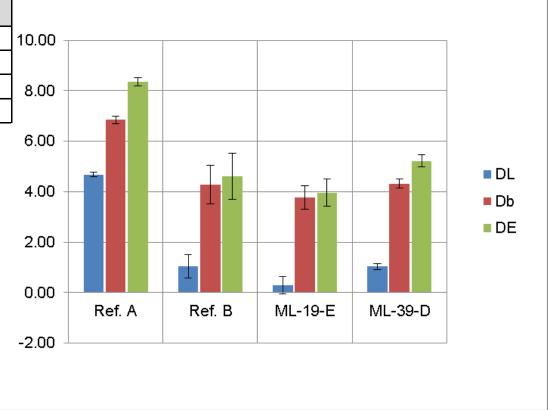





No failure, delamination, flanking or cracking!

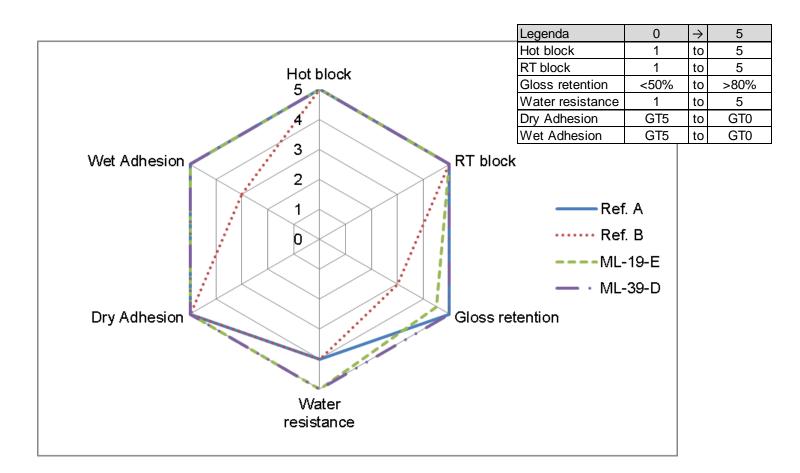
# Natural exposure One year gloss retention equal to std. lasures




|         | Gloss     |  |
|---------|-----------|--|
|         | retention |  |
| Ref. A  | 58.6%     |  |
| Ref. B  | 62.8%     |  |
| ML-19-E | 61.0%     |  |
| ML-39-D | 64.1%     |  |



### Natural exposure Discoloration




|         | ΛL   | 46   | ΛE   |   |
|---------|------|------|------|---|
|         | ΔL   | Δb   |      |   |
| Ref. A  | 4.68 | 6.85 | 8.37 | 1 |
| Ref. B  | 1.05 | 4.29 | 4.61 |   |
| ML-19-E | 0.30 | 3.78 | 3.97 |   |
| ML-39-D | 1.04 | 4.32 | 5.23 |   |



### Full comparison Complete picture





ML-19-E and ML-39-D good as commercial lasures or, even, better





- > EU Ecolabel, background and facts
- > Why adipic acid dihydrazide (ADH)?
- > New development  $\rightarrow$  1-to-1 substitution
- > Comparative study  $\rightarrow$  lasure formulations



- Lasure formulations ML-19-E and ML-39-D equal or outperform commercial standards
- ML-745 and ML-747, both ADH-free, are suitable for Architectural exterior wood segment (varnish and lasure)
- Cross-linkable two-phase polymers ADH-free
- ML-745 and ML-747 are Ecolabel compliant binder without the hazard statement H411
- No trade-off between life span and environmental impact

#### Acknowledgements R&D synthesis work



- ✓ Dr. Andrew Hearley<sup>\$</sup> EPS B.V. (Engineered Polymer Solutions)
- Emile Stevens EPS B.V. (Engineered Polymer Solutions)
- ✓ Ibrahim Kemikkiran EPS B.V. (Engineered Polymer Solutions)

\$ - Dr. Hearley moved to The Valspar Corporation

# Do you have questions? Contact me ...

 Massimo Longoni – EPS B.V. (Engineered Polymer Solutions) massimo.longoni@eps-materials.com or Visit us at European Coating Show 2017 - Hall 7, Stand 356N