IMPROVED ADHESION TO TPO AND OTHER HARD-TO-STICK SURFACES WITH WATERBORNE ACRYLIC RESINS

Robert Sandoval, Ph.D.

R&D Technical Manager Industrial & Construction

Western Coatings Symposium — Oct. 2019

Overview

- Adhesion is oftentimes a musthave for coatings formulations
- First noticeable sign of failure to a customer is often some form of adhesion failure
- Understanding the substrate is critical to formulating the correct type of paint

What's in the Coating Formulation?

Raw Material	Pounds	
Water	150	
Dispersant	3	
Ammonia	3	
Defoamer	2	
Zinc Oxide	10	
TiO2	60	
Calcium Carbonate	400	
Defoamer	2	
Acrylic Latex		
(55% solids, 45%	500	
water)		Daramat
Coalescent	7	Wt% soli
Biocide/Fungicide	11	Vol% sol
Glycol	11	PVC
Cellulose Thickener	3	VOC, g /
Total	1162	paw

Parameter	Value
Wt% solids	65
Vol% solids	51
PVC	40
VOC, g /liter	41
wpg	11.6

Overview

Basics of Challenging Substrates

- Metal
- Asphalt
- Low Surface Energy
 - Thermoplastic Olefin (TPO)
- Wood
- Cementitious
- Glass

Strategies to Adhere to Challenging Substrates

- Resin-based approach
- Coating Formulation

Overview

Basics of Challenging Substrates

- Metal
- Asphalt
- Low Surface Energy
 - Thermoplastic Olefin (TPO)
- Wood
- Cementitious
- Glass

Strategies to Adhere to Challenging Substrates

- Resin-based approach
- Coating Formulation

Adhesion to Steel

- Provided sufficient wetting is present, acid/base interactions, ionic interactions and van der Waals forces considered of primary importance¹
- Isoelectric point of steel difficult to pinpoint, but likely around pH ~8-9
- As ammonia evaporates and pH drops, cationic sites arise allowing for electrostatic interactions
- Mechanical interlocking also significant in blasted substrates

Corrosion vs. Acid Content

Clear films, 1.2mil DFT, 300hrs B117

Decreasing Acid Content = Improved Corrosion Resistance

Challenge:

Adhesion cannot be obtained simply by increasing acid monomer content due to poor corrosion performance

Increasing Acid Content = Improved Adhesion

Formulation Impact on Adhesion Plasticizer and Dispersant

Adhesion to Multiple Substrates

Asphalt

Design of Experiments for Asphalt Adhesion

Design	Factors
1	Resin, Dispersants type, Extender type, PVC, Zinc
2	Resin, Dispersant type, Zinc, Wetting Aid
3	Resin, Dispersant Amount, PVC, Zinc

180° Peel Adhesion Testing

DOE 1 Results

Adhesion

Bleed Block

- Adhesion: Significant effects from resin, hydrophilic dispersant imparts better adhesion
- Bleed Block: Hydrophilic dispersant detrimental, Large effect from latex, smaller effect from dispersant

DOE 2 Results

Adhesion affected by latex choice, dispersion type

Wetting aid had a surprising negative effect on adhesion

- Failure mode indicated aggregate pull out for all samples
- More aggregate removed with wetting aid present – interfering with previous bond?

Adhesion

DOE 3 Results

Adhesion

Adhesion to Multiple Substrates

Metal	Asphalt	TPO
 Substrate: Lewis acids/Lewis bases Adhesion Strategies: Use of acid monomer to improve adhesion Dispersant choice Plasticizer did not impact Other Considerations: Impact on corrosion resistance 	 Substrate: Small molecule hydrocarbons, Naphthalenes, polar aromatics Adhesion Strategies: Asphalt is a complex mixture Resin choice Many formulation options Other Considerations Impact on bleed black performance 	

Thermoplastic Olefin (TPO)

 Poly(olefins) are made from alkenes (C_nH_{2n})

Propylene

Polyethylene

Thermoplastic Olefin (TPO)

- Unlike metal substrates, TPOs have no functionality that can be used to improve adhesion (i.e., acids, amines, hydroxyls, etc.)
- TPO membranes have other ingredients such as TiO₂, flame retardants, UV absorbers/stabilizers, processing aids

So how does one improve adhesion to TPO??

Methods to Improve TPO Adhesion: Surface Roughening

Drawback: Requires modification of substrate

- As coating manufacturer, this is undesirable
- Also undesirable for coating applicator, as this requires time (\$\$\$)

Methods to Improve TPO Adhesion: Aging Substrate

Drawback: Requires time for TPO to age

• Not useful for repair or in instances where virgin TPO is used

Methods to Improve TPO Adhesion: Solvent-based

Drawback: High VOC, odor, may still not adhere (due to lack of functionality)

Drawback: High VOC, odor, may still not adhere (due to lack of functionality)

• Block copolymers with some component of functional

Drawback: Difficult to make block copolymers in traditional emulsion polymerization

- Many of these primer/basecoat approaches are solvent-based
- Water-based approaches are not effective on virgin TPO

Typical emulsion polymer components

- Some components are necessary to make stable emulsion polymers
- Ethylene/propylene cannot be incorporated into emulsion polymerization
- · Polarity of many common monomers not ideal

Typical emulsion polymer components

- Some components are necessary to make stable emulsion polymers
- Ethylene/propylene cannot be incorporated into emulsion polymerization

Emulsion polymers are random (not block-like)

• Difficult for "non-polar" regions to associate together

```
mon
```

mon

-AAAAABBBBBBBBAAAAA-

-AABBABAAABABBBAABABABA-

Drawback: Difficult to make block copolymers in traditional emulsion polymerization

- Many of these primer/basecoat approaches are solvent-based
- Water-based approaches are not effective on virgin TPO

Emulsion polymers are random (not block-like)

• Difficult for "non-polar" regions to associate together

mon

-AAAABBBBBBBBAAAAA-

-AABBABAAABABBBAABABABA-

Drawback: Difficult to make block copolymers in traditional emulsion polymerization

- Many of these primer/basecoat approaches are solvent-based
- Water-based approaches are not effective on virgin TPO

Market Need: Obtain adhesion on virgin TPO in a waterborne acrylic emulsion

TPO Adhesion Experimental Design

Purpose

 Gain an understanding of the effect of various parameters on TPO primer formulation performance, namely, Adhesion, Tack, and Water Uptake

Variables tested

- Polymer Type (Conventional latex vs. Experimental latex)
- Dispersant ladder: 1 9 lbs
- Nonionic wetting aid: 0 1% on total pigment
- Filler particle size and PVC: Ladder from 20-60% by 5% using both 3 and 12 micron calcium carbonate (CC)

TPO Primer Base Formula

Pound	Gallon	Daw Material		
S	S			
156.00	18.73	Water		
3.00	0.30	Dispersant		
3.00	0.40	Ammonium		
		Hydroxide		
1.00	0.12	Defoamer		
30.00	0.90	TiO ₂		
450.00	19.94	Calcium Carbonate		
			Parameter	Value
1.00	0.12	Defoamer	Weight Solids	65 91
450.00	52.63	Polymer		00101
11.00	1.15	Mildewcide/Fungicide	Volume Solids	52.82
11.00	1.27	Propylene Glycol	PVC	40.16
3.00	0.26	Rheology Modifier	Maight/gal	
34.90	4.18	Water	weight/gal	11.54
1153.9	100	Total	VOC, g/L	24

Resin Impact on Peel Adhesion

45 mil new TPO

Dramatic impact on resin choice...

Results - Adhesion

Variable	Effect
Dispersant ladder	Little effect until 9 lbs then 25% drop
Nonionic wetting aid	Negative – 0.5% and 1% caused significant drop
	Negative - large drop above 40 PVC for 3m CC, 30 PVC for 12m
Filler particle size and PVC	CC

Roofing System Cross Section

180° Peel Membrane Adhesion Testing

Benchmarking - *Adhesive*

Red: Adhesive failure, 24H Pink: Adhesive failure, 7 day Blue: Cohesive failure, 24 H Lt. Blue: Cohesive failure, 7 day

Competitive Benchmark - 180° Peel Adhesion

Sample	24hr dwell @ RT	Mode of failure	7 day dwell @ RT	Mode of failure
WB Commercial Sample 1	4.1 pli	Adhesive	3.8 pli	Adhesive
WB Commercial Sample 2	6.9 pli	Adhesive	4.5 pli	Adhesive
WB Commercial Sample 3	5.3 pli	Cohesive	9.3 pli	Cohesive
EPS Experimental Polymer WB	9.5 pli	Cohesive	15.5 pli	Cohesive
Solvent-based Commercial Sample 1	2.2 pli	Cohesive	8.5 pli	Cohesive
Solvent-based Commercial Sample 2	2.5 pli	Cohesive	8.1 pli	Cohesive
Solvent-based Commercial Sample 3	1.9 pli	Cohesive	10.3 pli	Cohesive

Testing Conditions - 180° Peel Adhesion-Crosshead Speed 2 inches/minute

Spread Rate - 9 lbs/100ft2

GAF 45 mil TPO

Substrate - Plywood

Adhesion to Multiple Substrates

Metal

- Substrate:
 - Lewis acids/Lewis bases
- Adhesion Strategies:
 - Use of acid monomer to improve adhesion
 - Dispersant choice
 - Plasticizer did not impact
- Other Considerations:
 - Impact on corrosion resistance

Asphalt

- Substrate:
 - Small molecule hydrocarbons, Naphthalenes, polar aromatics
- Adhesion Strategies:
 - Asphalt is a complex mixture
 - Resin choice
 - Many formulation options
- Other Considerations
 - Impact on bleed black
 performance

TPO

- Substrate:
 - Little to no Functionality
- Adhesion Strategies:
 - Use of primer/basecoat layer
 - Aged TPO
 - Resin strongly impacts adhesion
- Other Considerations:
 - Most WB emulsion polymers = poor adhesion
 - More unique chemistries needed to obtain adhesion in WB

Adhesion to Multiple Substrates

Metal

- Substrate:
 - Lewis acids/Lewis bases
- Adhesion Strategies:
 - Use of acid monomer to improve adhesion
 - · Dispersant choice
 - Plasticizer did not impact
- Other Considerations:
 - Impact on corrosion resistance

Asphalt

- Substrate:
 - Small molecule hydrocarbons, Naphthalenes, polar aromatics
- Adhesion Strategies:
 - Asphalt is a complex mixture
 - Resin choice
 - Many formulation options
- Other Considerations
 - Impact on bleed black
 performance

TPO

Substrate:

- Little to no Functionality
- Adhesion Strategies:
 - Use of primer/basecoat layer
 - Aged TPO
 - Resin strongly impacts adhesion
- Other Considerations:
 - Most WB emulsion polymers = poor adhesion
 - More unique chemistries needed to obtain adhesion in WB

Obtaining adhesion to a substrate is a complex property, involving both resin and formulation

Need to understand the substrate so that an appropriate coating can be designed

Technical Contributors:

• Brent Crenshaw, Glenn Frazee, Chris Fredrickson, Mary Jane Hibben, Chris LeFever, Ashley Rodgers, Edwin Rodriguez

The data in this presentation represent typical values. Because application variables are a major factor in product performance, this information should serve only as a general guide. EPS assumes no obligation or liability for use of this information.

