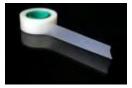


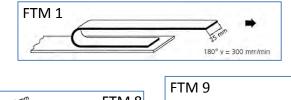
Accelerated Waterborne Pressure Sensitive Adhesive Development through Rheological Screening

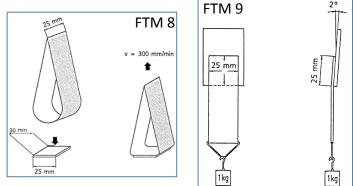

J. Ness, A. Hearley, K. Kirkwood, S. Godavarti & T. H. Killilea Engineered Polymer Solutions, The Netherlands, a business group of the Valspar Corporation

Acknowledgements: L. Ham for PSA performance testing

Agenda

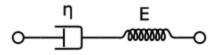
- Waterborne Pressure Sensitive Adhesive Background
- Design of Experiment Approach
- Our Results
 - Trends
 - Models
 - Correlations
- Conclusions
- Newly developed WB PSAs





Pressure Sensitive Adhesives

- Adhesive materials which, when dry, possess a lasting & aggressive tack which enables them to adhere to a wide variety of substrates upon contact
 - Tapes & Labels
- PSA measured through 3 performance attributes
 - Tack: force required to remove from substrate
 - Peel: adhesive/substrate bond strength
 - Shear: cohesive strength
- Issues:
 - Time consuming
 - Film quality dependent
 - High variability



FINAT TECHNICAL HANDBOOK, Test Methods, 8th Edition, 2009

PSAs – Viscoelastic Materials

- Tack, Peel and Shear dependent on PSA bulk linear viscoelastic properties
 - Directly related to PSA response to imposed stress
 - Established correlation of deformation frequencies & adhesion test time-scales
 - $\omega = 10^{-2}$ to 10^{2} rad/s
- Rheology well known method for measuring PSA properties
 - Faster, more repeatable & representative of in-use performance
 - Screen & identify trends for synthetic parameters to achieve target properties

Adhesives Research

Our Goals:

- Investigate effects of PSA synthetic parameters on performance and viscoelastic properties
- Develop empirical models for predicting PSA performance
- Develop correlations between performance metrics & rheological behavior
- Utilize results to develop new WB PSAs

Experimental Design

- Box-Behnken Response Surface Design
 - Efficient estimation of 1st & 2nd-order coefficients
 - 3-factor, 3-level design with 2 replicates
- Generic WB PSA formulation
 - Fixed soft/hard M ratio
 - 400nm, 60% solids
 - Broad variable levels
- Soft Monomer type
 CTA concentration
 CTA addition method
- Evaluations (DOE outputs)
 - FINAT Test Methods
 - Loop Tack, 180° Peel Adhesion & Shear resistance
 - Glass & Stainless Steel
 - Linear viscoelastic analysis using a rheometer

PSA#	Soft Monomer	[CTA]	CTA Addition Method
1	EHA	0.125	1.5
2	EHA	0.5	1.5
3	EHA/BA	0.125	1.5
4	EHA/BA	0.5	1.5
5	BA	0.125	1
6	BA	0.5	1
7	BA	0.125	2
8	ВА	0.5	2
9	EHA	0.25	1
10	ЕНА/ВА	0.25	1
11	EHA	0.25	2
12	EHA/BA	0.25	2
13	BA	0.25	1.5
14	BA	0.375	1.5
15	BA	0.375	1.5

PSA Performance Results

PSA#	SM	P.S.	Dp ₁ ² (vol%)	Dp ₂ ² (vol%)	solids	рН	Тg
10/14	0	nm	nm	nm	%	-	°C
1	EHA	397	385	-	60.4	4.0	-41.9
2	EHA	410	411	-	60.8	4.0	-42.8
3	EHA/BA	227	391 (49)	61 (51)	60.4	4.4	-33.0
4	EHA/BA	230	400 (46)	74 (54)	60.8	4.5	-32.7
5	BA	253	381 (57)	72 (43)	60.4	4.1	-25.6
6	BA	260	383 (52)	103 (46)	60.3	3.9	-27.7
7	BA	240	383 (52)	70 (54)	60.2	4.0	-25.8
8	BA	279	476 (44)	99 (56)	61.0	4.1	-27.1
9	EHA	405	390	-	60.4	4.1	-38.9
10	EHA/BA	291	407 (63)	80 (37)	60.3	4.2	-31.5
11	EHA	399	385	-	60.7	4.3	-40.4
12	EHA/BA	436	429	-	60.2	4.2	-33.9
13	BA	434	423	-	60.3	4.0	-28.3
14	BA	439	435	-	60.2	4.3	-25.9
15	BA	434	426	-	60.1	4.0	-27.7

- Particle size within 10% of target
- Replicates agree well
- Wide T_g range: -42.8 to -25.6°C
- Bimodal particle size distribution with butyl acrylate

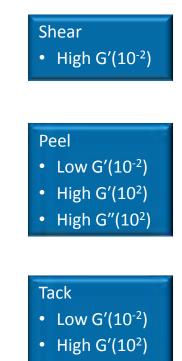
¹Lower surfactant/monomer ratio. ²Particle Size Peak Diameter.

Achieved Latex Design Targets

FINAT Test Method Results

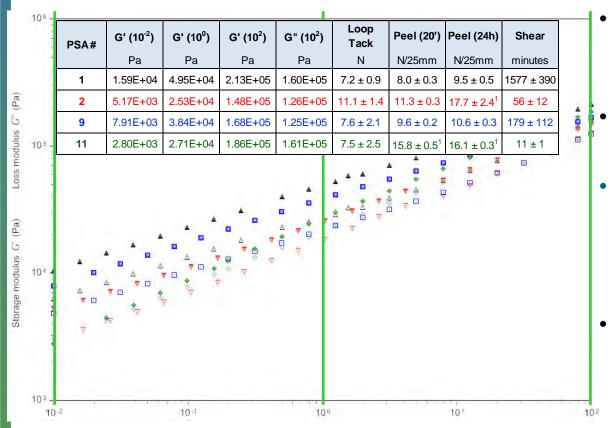
PSA#	Loop Tack	Peel (20')	Peel (24h)	Shear
	Ν	N/25mm	N/25mm	minutes
1	7.2 ± 0.9	8.0 ± 0.3	9.5 ± 0.5	1577 ± 390
2	11.1 ± 1.4	11.3 ± 0.3	17.7 ± 2.4^{1}	56 ± 12
3	8.3 ± 1.4	7.8 ± 0.7	11.9 ± 1.6	1000 ± 124
4	10.3 ± 2.6	9.9 ± 0.6	21.4 ± 1.8^{1}	93 ± 4
5	5.9 ± 2.4	5.5 ± 0.4	8.5 ± 0.5	841 ± 47
6	4.9 ± 3.1	11.1 ± 0.4	13.5 ± 0.4	48 ± 3
7	5.0 ± 1.2	9.6 ± 0.4	12.2 ± 1.0	147 ± 21
8	9.4 ± 1.3	12.6 ± 0.9^{1}	9.7 ± 1.1^{1}	13 ± 1
9	7.6 ± 2.1	9.6 ± 0.2	10.6 ± 0.3	179 ± 112
10	6.1 ± 2.1	8.2 ± 1.2	11.3 ± 0.5	90 ± 20
11	7.5 ± 2.5	15.8 ± 0.5^{1}	16.1 ± 0.3^{1}	11 ± 1
12	9.3 ± 2.5	20.0 ± 0.7^{1}	20.2 ± 0.2^{1}	21 ± 3
13	7.4 ± 1.6	9.9 ± 1.1	12.1 ± 0.1	119 ± 16
14	6.3 ± 1.1	10.6 ± 1.5	22.3 ± 4.2^{1}	106 ± 2
15	7.7 ± 2.5	10.9 ± 1.7	16.4 ± 0.3^{1}	93 ± 13

- Distinct differences evident
- Wide performance range achieved
- Replicates agree within error


¹Cohesive Failure, all others were clean plate.

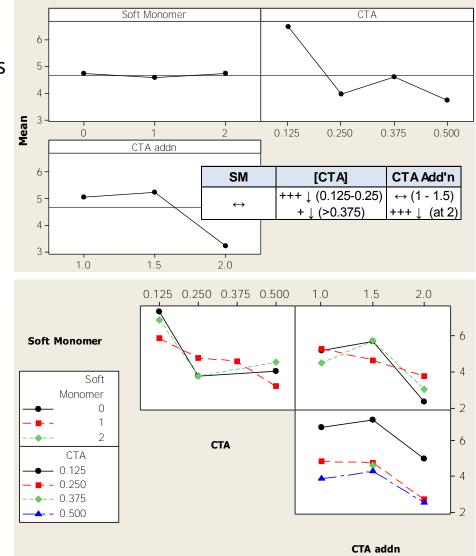
Achieved Significant Variation in Data

Applying Rheology Correlation


- Based on Chang's Viscoelastic window concept
 - 10⁻² to 10² (rad/s) spans test time-scales
- Shear: low frequencies (creep)
 - G'(10⁻²)
- Peel and Tack: 2 process steps
 - Bonding favored by lower modulus at frequency
 - Peel G'(10⁻²)
 - Tack G'(10⁰)
 - Debonding
 - Cohesive strength: G'(10²)
 - Energy of dissipation: G"(10²)

• High G''(10²)

Results of Rheology Measurements


- G'(10⁻²) trends correlate to shear data
- Tack & Peel more convoluted
- PSA2 had highest Tack
 - Lowest G'(10⁰)
 - But lowest G' & G"(10²)
- Bonding & debonding steps complicate Tack & Peel
 - Trends more difficult to discern

Rheology Can be Used to Discern Differences

DOE Part 1: Trend Analysis

- Performance trend determination
 - Response surface regression analysis for 1st and 2nd order effects
- Main Effects means plotted vs. each variable and each level (low to high)
 - Slope: effect strength & direction
- Interactions means plotted vs. each variable at fixed level of 2nd variable
 - Parallel: no interaction
- SM interacts with CTA & CTA addition method
 - No interaction with CTA & CTA addition method

Trend Analysis Summary Matrix

	Soft Monomer	[CTA]	CTA Addition Method
Loop Tack	↔ (BA or BA/EHA) ++ ↓ effect (EHA)	+++ ↑	+++ ↑ (1-1.5) + ↓ (>1.5)
180° Peel (20')	\leftrightarrow	+++ ↑ (0.125-0.25) + ↓ to ↔ (>0.25)	+ ↑ (1-1.5) +++ ↑ (1.5 to 2)
180° Peel (24h)	↔ (BA or EHA) ++ ↑ (BA/EHA)	+++ ↑ (0.125-0.375) +++ ↓ (0.375-0.5)	+++ ↑ (1-1.5) + ↓ (1.5-2)
Shear Resistance	\leftrightarrow	+++ ↓ (0.125-0.25) + ↓ (>0.375)	↔ (1 - 1.5) +++ ↓ (at 2)
G' (10 ⁻²)	+	+++ ↓ (0.125-0.25) + ↑ (0.25-0.375) +++ ↓ (>0.375)	+++↓
G′ (10 ⁰)	+++	+++ ↓ (0.125-0.25) +++ ↑ (0.25-0.375) +++ ↓ (>0.375)	++↓
G' (10 ²)	+++ ↑ (EHA-BA) +++ ↓ (BA-BA/EHA)	+++ ↓ (0.125-0.25) +++ ↑ (0.25-0.375) +++ ↓ (>0.375)	+↓to ↔
G" (10 ²)	+++	+++ ↓ (0.125-0.25) +++ ↑ (0.25-0.375) +++ ↓ (>0.375)	\leftrightarrow

• Soft Monomer

- Tack, Peel(24h), G' and G"
- No effect on Shear or P(20')
- CTA concentration
 - Tack \uparrow while Shear \downarrow
 - G'(10⁻²) follows Shear's trend
 - Peel 个 to a point
 - Optimal Peel at medium [CTA]
- CTA Addition Method
 - Effected Tack, Peel and Shear
 - 1 to 2 \downarrow G'(10⁻²) & (10⁰)

+, ++, +++ = weak, moderate, strong effect. Effect direction: ↑ increase, ↓ decrease,

 $\leftrightarrow \text{ no effect}.$

Trend Analysis Indicates [CTA] Most Influential Variable

DOE Part 2: Model Development

- Response surface models developed for tack, peel, shear and rheology metrics
 - Quantify strength of 1st and 2nd order effects
 - Predict PSA properties
- Model development methodology
 - Insignificant terms removed via backwards regression (α = 0.05)
 - Maximize correlation coefficients R², R²-adj. and R²-pred.

Output	R ²	R ² -pred.	R ² -adj.	Response Surface Model Equation	
In(Shear) 97.0% 89.5% 94.8%		94.8%	$= B_0 - B_1(SM)^* - B_2(CTA) + B_3(CTA Add'n) + B_4(CTA)^2 - B_5(CTA Add'n)^2 + B_6(SM)(CTA Add'n)$		
Loop Tack	91.8%	72.7%	83.5%	$= B_0 - B_1(SM)^* - B_2(CTA) + B_3(CTA Add'n) + B_4(SM)^2 - B_5(CTA Add'n)^2 + B_6(SM)(CTA Add'n) + B_7(CTA)(CTA Add'n)$	
180° Peel (20')	75.0%	37.5%	65.0%	= B_0 + B1(CTA) - B2(CTA Add'n) - $B_3(CTA)^2$ + $B_4(CTA Add'n)^2$	
180° Peel (24h) 61.0% 0.0% 39.3%		39.3%	$= B_0 + B_1(CTA) + B_2(CTA \text{ Add'n})^* - B_3(CTA)^2 - B_4(CTA \text{ Add'n})^2 - B_5(CTA)(CTA \text{ Add'n})$		
G'(10 ⁻²)	91.8%	68.9%	85.6%	$= B_0 + B_1(SM)^* - B_2(CTA) + B_3(CTA \text{ Add'n}) - B_4(SM)^2 + B_5(CTA)^2 - B_6(CTA \text{ Add'n})^2$	
G'(10 ⁰)	89.8%	73.1%	85.7%	$= B_0 + B_1(SM) - B_2(CTA) - B_3(CTA Add'n) - B_4(SM)^2$	
G'(10 ²)	98.2%	92.2%	96.8%	$= B_0 + B_1(SM) + B_2(CTA) + B_3(CTA \text{ Add'n}) - B_4(SM)^2 - B_5(SM)(CTA \text{ Add'n}) - B_6(CTA)(CTA \text{ Add'n})$	
G''(10 ²)	98.4%	92.6%	96.7%	$= B_0 + B_1(SM) + B_2(CTA) + B_3(CTA Add'n)^* - B_4(SM)^2 - B_5(SM)(CTA) - B_6(SM)(CTA Add'n) - B_7(CTA)(CTA Add'n)$	
G"(10 ⁻)	G''(10²) 98.4% 92.6% 96.7% = $B_0 + B_1(SM) + B_2(CTA) + B_3(CTA Add'n)^* - B_5(SM)(CTA) - B_6(SM)(CTA Add'n) - B_7(CTA)(CTA Add'n)$				

* Denotes an insignificant term included to preserve model hierarchy.

Response Surface Model Predictability

Performance models

- Shear and tack: highest R²-pred and R²-adj.
 - Able to predict new responses and describe variation
- Peel proved more difficult to model

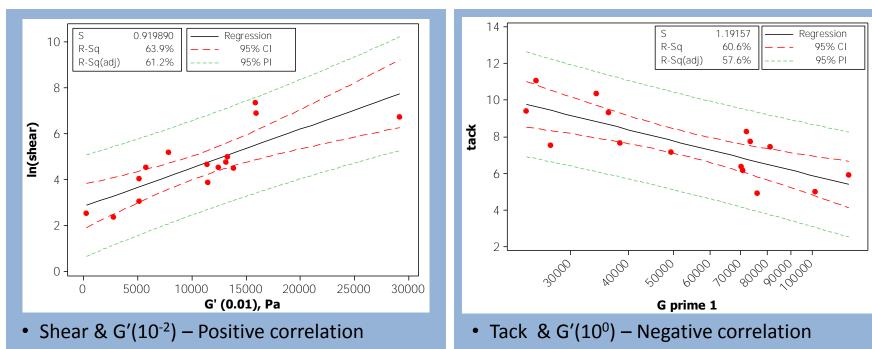
Rheological models

- Higher R²-adj. than performance, described 85% of data variation
 - G' and G"(10^2) best predictors of all models
 - G'(10⁰) and G'(10⁻²) lower correlation

Output	R ²	R ² -pred.	R ² -adj.
In(Shear)	97.0%	89.5%	94.8%
Loop Tack	91.8%	72.7%	83.5%
180° Peel (20')	75.0%	37.5%	65.0%
180° Peel (24h)	61.0%	0.0%	39.3%
G'(10 ⁻²)	91.8%	68.9%	85.6%
G'(10 ⁰)	89.8%	73.1%	85.7%
G'(10 ²)	98.2%	92.2%	96.8%
G''(10 ²)	98.4%	92.6%	96.7%

Shear and Tack Models Able to Predict Performance

Response Surface Model Trends


Effect Strength (direction)	Strong	Medium
Shear Resistance	(CTA) ² (+) & (CTA) (-)	(CTA Add'n) (+)
Loop Tack	(CTA) (-)	(CTA)(CTA Add'n) (+)
180° Peel (20')	(CTA) ² (-)	(CTA) (+)
G′ (10 ⁻²)	(CTA) ² (+) & (CTA) (-)	(CTA Add'n) (+)
G′ (10 ⁰)	[CTA] (-)	SM (+)
G' (10 ²)	SM (+)	(CTA)(CTA Add'n) (-)
G" (10 ²)	SM (+)	(CTA)(CTA Add'n) (-)

- [CTA] known to effect molecular weight and gel fraction
 - Good correlation with G'(10⁻²) and Shear
- Negative direction with Tack surprising
 - 2nd order interaction term is positive

Models Indicate [CTA] Most Influential Variable

Correlation Models: Performance and Rheology

- FINAT metrics plotted vs. frequency data
- Models based on fitted line plot regressions
 - Linear regression models adequately reflected rheology data trends (low ANOVA values)

- Adequate correlation values
- As G'(10⁰) 个, higher flow resistance, lower wet-out and bonding efficiency = lower Tack

Adequate correlation values

Correlation Models: Performance and Rheology

Output	R ²	R ² -adj.	ANOVA p-value	Residuals p-value	Model Equation
In(Shear) vs. G'(10 ⁻²)	63.9%	61.2%	0.000		y = 2.827 + 0.000169x
Loop Tack vs. log(G'(10 ⁰))	60.6%	57.6%	0.001	0.207	y = 37.26 - 6.26*log(x)
Loop Tack vs. log(G'(10 ²))	59.2%	56.0%	0.001	0.020	y = 63.78 - 10.41*log(x)
Loop Tack vs. log(G"(10 ²))	53.2%	49.6%	0.002	0.192	y = 72.19 - 12.27*log(x)
180° Peel 20' vs. G'(10 ⁻²)	51.7%	48.0%	0.003	0.025	y = 14.63 + 0.000358x

- Negative correlation between tack versus log G'(10²) and G''(10²)
- Peel correlation models were inadequate
 - Recall, peel response surface models had lower correlations than tack and shear
 - Difficulty in developing adequate peel models may lie in high variability of peel adhesion data
- Chang demonstrated good correlation between peel and rheological behavior

Expect Rheology Data to be Better Predictor of PSA Performance than Peel Models

17

Conclusions

- CTA concentration was most influential variable for all responses in Box-Behnken experimental design
 - Strong positive effect on loop tack & strong negative effect on shear resistance
 - Peel adhesion highest at mid-level CTA concentrations
- Developed response surface models for both performance and rheological metrics
 - Shear and loop tack models had highest predictability (R2-pred.~90% & 73%)
 - Peel adhesion proved more difficult to model
- Correlation of FINAT metrics to rheological data resulted in adequate models for
 - shear to $G'(10^{-2})$ and loop tack to $\log(G'(10^{0}))$
- No adequate correlation model found for peel adhesion

DOE Analysis and Empirical Models Aligned

Developed New Waterborne Adhesives

EPS® 150 – WB PSA

- **Filmic** label applications, including PVC film
 - APEO free
 - Acrylic-based
 - Good balance of tack, peel and shear
 - Very good water whitening resistance

Physical data				
Solids by weight	50% (± 1%)	ISO 3251		
Viscosity at 23 °C (Brookfield, Spindle 2)	50 – 200 mPa.s	ISO 2555		
pH value	4.0-6.0	ISO 976		
Typical values				
Density at 20 °C	approx. 1055 kg/m ³			
Freeze/thaw stability	not resistant			
Tg	approx30 °C			
Shear adhesion	80 hr	1 in ² /1.8kg*		
Loop tack	14 N	FINAT 9*		
Peel 20 min.	10 N	FINAT 1*		
Peel 24 hour	11 N	FINAT 1*		
* Control 15 g/m^2 on 26 µm polyector film, adhesion to glass				

EPS® 157M – WB Coater Ready PSA

- **General purpose** label applications
 - APEO free
 - Acrylic-based
 - Good balance of tack, peel and shear

Physical data					
Solids by weight	57% (± 1%)	ISO 3251			
Viscosity at 23 °C (Brookfield, Spindle 2)	180 – 250 mPa.s	ISO 2555			
pH value	7.0 – 8.5	ISO 976			
Typical values					
Density at 20 °C	approx 1055 kg/m ³				

Density at 20 °C	approx. 1055 kg/m ³	
Freeze/thaw stability	not resistant	
Тg	approx40 °C	

* Coated 15 g/m² on 36 μ m polyester film, adhesion to glass.

Science Simplified

Thank You!

Booth 153, Hall 1

