New VOC Analytical Methodologies and Potential Effects on Formulations

Dave Nevison, Scientist EPS - Engineered Polymer Solutions Coatings Regulations & Analytical Methods Conference May 19, 2015

Topics:

- Brief History of VOC Methods
- Comparison of EPA Method 24 vs ASTM D6886
- Results of Low-VOC and Zero-VOC Paints
- Results of Humectants & Surfactants
- Results of Conventional and Low-VOC Colorants
- Results of Low-VOC Coalescents and Additives
- Comparison of Zero-VOC Paints
- How Does This Data Relate to Formulations?
- What to Ask Your Suppliers?

Changing VOC Analytical Methods

- Historically based on EPA Method 24
- EPA 24 remains the "Official Certified Standard"
- Newer GC Methods gaining preference
 - ASTM D6886, SCAQMD M313
- New methods improve accuracy of very low VOC products
- However, new problems may be introduced
- Formulators, regulatory managers, manufacturers must understand how this may affect products
- Need to ask the right questions of your suppliers

EPA Method 24 vs ASTM D6886

- EPA Method 24:
- Approved ~1984
- Accuracy for VOC >100 g/l = Good
- Accuracy for VOC <100 g/l = High Variability
- VOC Measurement
 - = Indirect

- ASTM D6886:
- Approved 2003
- Accuracy for VOC
 >100 g/l = Good
- Accuracy for VOC <100 g/l = Good
- VOC Measurement
 = Direct

EPA Method 24 for VOC

- EPA 24 requires 4 pieces of data:
 - %NVM (1 hr @ 110 deg C), ASTM D-2369
 - Density (lbs/gal), ASTM D-1475
 - % Water (by KF titration), ASTM D-4017
 - % Exempt Solvent (if any, by GC), ASTM D-4457
 - EPA dictates exact methods to be used
 - At VOC <50 g/l (high water content) EPA 24 has high variability due to poor water accuracy
 - Small errors can have large effect on VOC
 - Most in Industry would agree

ASTM D6886 for Solvents/VOCs

- Gas Chromatograph Method
- 1st approved by ASTM in 2003
- Reapproved in 2012 with some minor changes:
 - 500 ppm limit -> 50 ppm limit per compound
 - Good for Low-VOC paints
 - Directly measures solvents/volatiles
 - Same calculation for VOC as EPA 24
 - Determines water by difference
 - (% Volatile % Solvent by GC = %H₂O)
 - Method is becoming the Industry standard

ASTM D6886 Analytical Procedure

- 0.7g paint sample + 10 ml Methanol (in duplicate)
- Add 10 ul EGDE Internal Standard
- Mix, sonicate, settle-out pigment or centrifuge
- Analyze by GC-FID (+ GCMS for positive ID)
- Specific instrumental conditions defined
- Quantify the volatiles/solvents detected that elute before Methyl Palmitate marker (~18.5 minutes)
- Methyl Palmitate chosen by SCAQMD based on BP, volatility, vapor pressure, etc.

GC Chromatograms:

- Low-VOC paint (<50 g/l)
- Humectants/Surfactants
- Low-VOC Coalescents
- Consumer Paint
 Comparisons
- Various Additives

- "Zero-VOC" paint
- Colorants (Conv/Low-VOC)
- Common Solvents/Co-Solvents

Chromatogram of Common Solvents

Retention Times for Common Compounds

<u>Ret Time</u>	Name
3.02	Ethanol
3.40	IPA
3.76	t-Butanol
6.15	n-Butanol
6.38	Dowanol PM
6.64	EG
7.35	PG
7.65	AMP-95
9.34	n-Butyl Ether
9.66	Butyl Cellosolve
10.23	DEG
10.86	2-Ethylhexanol
12.26	Butyl Carbitol
12.60	Tri-EG
13.35	Vantex-T
13.68	Texanol #1
13.76	Texanol #2
14.62	Tetra-EG
15.83	IPBC
17.11	Penta-EG
18.54	Methyl Palmitate

Paints: Low-VOC vs "Zero-VOC"

Humectants

Resin + Surfactant + Additives

Colorants: Traditional vs Low-VOC

Coalescents, Additives, BP Markers

Low-VOC Coalescents

- Texanol
- Paraplex WP-1
- Velate 368
- Dapro FX-514
- Methyl Palmitate
- EPS 9133
- EPS 9147
- Santicizer 160
- Loxanol EFC 100
- Optifilm 400

- 13.8 min = VOC
- 13, 15, 19, 23 = Partial VOC
- 16.5 = VOC
- 17.8 = VOC
- 18.4 = Cut-off for VOC
 - 21.3 = Not VOC
- 22.4

- 24.5
- 25.1
- 25.5

- = Not VOC = Not VOC
- = Not VOC
- = Not VOC
 - = Not VOC

Zero-VOC Paint Comparisons

Example VOC Calculation

- % NVM
- % Volatile
- % Solvent
- % Water
- Wt/Gal
- VOC (lb/gal)
- VOC (g/l)

- = 50.00%
- = 50.00%
- = 0.15%
- = 49.85% by difference
- = 10.40 lbs
- = 0.04 lb/gal
- = 5.0 g/l

Remember:

- GC-based methods are but one of many methods used for VOC worldwide
 - EPA 24
 - SCAQMD M313
 - ISO-11890
 - ISO-17895
 - Emission Chamber Testing

Summary:

- GC methods such as ASTM D6886 and M313 are a direct measurement of volatiles.
- Caution: GC methods give false positives
- Some common biocides, additives, and low-VOC coalescents give positive results using this method
- Especially critical with zero-VOC paints
- If concerned, run these GC methods
- The analysis of raw materials and additives is a must before the development of new paints
- Formulators/Regulators: Ask suppliers very specific questions about their products:
 - What is the VOC of your product?
 - According to what method?

Thank You

• Contact:

Dave Nevison, Scientist EPS – Engineered Polymer Solutions 1400 North State Street Marengo, IL 60152 <u>david.nevison@eps-materials.com</u> 612-375-7953